Jet streams are fast flowing, narrow air currents found in the atmosphere. The main jet streams are located near the altitude of the tropopause, the transition between the troposphere and the stratosphere (where temperature increases with altitude). The major jet streams on Earth are westerly winds (flowing west to east). Their paths typically have a meandering shape; jet streams may start, stop, split into two or more parts, combine into one stream, or flow in various directions including the opposite direction of most of the jet. The strongest jet streams are the polar jets, at around 7–12 km (23,000–39,000 ft) above sea level, and the higher and somewhat weaker subtropical jets at around 10–16 km (33,000–52,000 ft). The Northern Hemisphere and the Southern Hemisphere each have both a polar jet and a subtropical jet. The northern hemisphere polar jet flows over the middle to northern latitudes of North America, Europe, and Asia and their intervening oceans, while the southern hemisphere polar jet mostly circles Antarctica all year round. Jet streams are caused by a combination of a planet's rotation on its axis and atmospheric heating (by solar radiation and, on some planets other than Earth, internal heat). Jet streams form near boundaries of adjacent air masses with significant differences in temperature, such as the polar region and the warmer air towards the equator. Other jet streams also exist. During the Northern Hemisphere summer, easterly jets can form in tropical regions, typically in a region where dry air encounters more humid air at high altitudes. Low-level jets also are typical of various regions such as the central United States. Meteorologists use the location of some of the jet streams as an aid in weather forecasting and many other things. The main commercial relevance of the jet streams is in air travel, as flight time can be dramatically affected by either flying with the flow or against the flow of a jet stream. Clear-air turbulence, a potential hazard to aircraft passenger safety, is often found in a jet stream's vicinity, but it does not create a substantial alteration on flight times. Jetstreams for aviation: The location of the jet stream is extremely important for aviation. Commercial use of the jet stream began on 18 November 1952, when Pan Am flew from Tokyo to Honolulu at an altitude of 7,600 metres (24,900 ft). It cut the trip time by over one-third, from 18 to 11.5 hours. Not only does it cut time off the flight, it also nets fuel savings for the airline industry. Within North America, the time needed to fly east across the continent can be decreased by about 30 minutes if an airplane can fly with the jet stream, or increased by more than that amount if it must fly west against it. Associated with jet streams is a phenomenon known as clear-air turbulence (CAT), caused by vertical and horizontal wind shear connected to the jet streams. The CAT is strongest on the cold air side of the jet, next to and just underneath the axis of the jet. Clear-air turbulence can cause aircraft to plunge and so present a passenger safety hazard that has caused fatal accidents, such as the death of one passenger on United Airlines Flight 826 |